Inhibition of myocardial glucose uptake by cGMP.
نویسندگان
چکیده
Guanosine 3',5'-cyclic monophosphate (cGMP), a second messenger of nitric oxide (NO), regulates myocardial contractility. It is not known whether this effect is accompanied by a change in heart metabolism. We report here the effects of 8-bromoguanosine 3',5'-cyclic monophosphate (8-BrcGMP), a cGMP analog, on regulatory steps of glucose metabolism in isolated working rat hearts perfused with glucose as the substrate. When glucose uptake was stimulated by increasing the workload, addition of the cGMP analog totally suppressed this stimulation and accelerated net glycogen breakdown. 8-BrcGMP did not affect pyruvate dehydrogenase activity but activated acetyl-CoA carboxylase, the enzyme that produces malonyl-CoA, an inhibitor of long-chain fatty acid oxidation. To test whether glucose metabolism could also be affected by altering the intracellular concentration of cGMP, we perfused hearts with N G-nitro-l-arginine methyl ester (l-NAME), an inhibitor of NO synthase, or with S-nitroso- N-acetylpenicillamine (SNAP), a NO donor. Perfusion withl-NAME decreased cGMP and increased glucose uptake by 30%, whereas perfusion with SNAP resulted in opposite effects. None of these conditions affected adenosine 3',5'-cyclic monophosphate concentration. Limitation of glucose uptake by SNAP or 8-BrcGMP decreased heart work, and this was reversed by adding alternative oxidizable substrates (pyruvate, β-hydroxybutyrate) together with glucose. Therefore, increased NO production decreases myocardial glucose utilization and limits heart work. This effect is mediated by cGMP, which is thus endowed with both physiological and metabolic properties.
منابع مشابه
Myocardial Glucose Uptake Is Regulated by Nitric Oxide via Endothelial Nitric Oxide
Although the role of nitric oxide (NO) in the modulation of vascular tone has been studied and well understood, its potential role in the control of myocardial metabolism is only recently evident. Several lines of evidence indicate that NO regulates myocardial glucose metabolism; however, the details and mechanisms responsible are still unknown. The aim of this study was to further define the r...
متن کاملMyocardial glucose uptake is regulated by nitric oxide via endothelial nitric oxide synthase in Langendorff mouse heart.
Although the role of nitric oxide (NO) in the modulation of vascular tone has been studied and well understood, its potential role in the control of myocardial metabolism is only recently evident. Several lines of evidence indicate that NO regulates myocardial glucose metabolism; however, the details and mechanisms responsible are still unknown. The aim of this study was to further define the r...
متن کاملExogenous nitric oxide reduces glucose transporters translocation and lactate production in ischemic myocardium in vivo.
Nitric oxide (NO) inhibits myocardial glucose transport and metabolism, although the underlying mechanism(s) and functional consequences of this effect are not clearly understood. We tested the hypothesis that NO inhibits the activation of AMP-activated protein kinase (AMPK) and translocation of cardiac glucose transporters (GLUTs; GLUT-4) and reduces lactate production. Ischemia was induced in...
متن کاملA Cyclic Guanosine Monophosphate–Dependent Pathway Can Regulate Net Hepatic Glucose Uptake in Vivo
We previously showed that hepatic nitric oxide regulates net hepatic glucose uptake (NHGU), an effect that can be eliminated by inhibiting hepatic soluble guanylate cyclase (sGC), suggesting that the sGC pathway is involved in the regulation of NHGU. The aim of the current study was to determine whether hepatic cyclic guanosine monophosphate (cGMP) reduces NHGU. Studies were performed on consci...
متن کاملcGMP phosphodiesterase inhibition improves the vascular and metabolic actions of insulin in skeletal muscle.
There is considerable support for the concept that insulin-mediated increases in microvascular blood flow to muscle impact significantly on muscle glucose uptake. Since the microvascular blood flow increases with insulin have been shown to be nitric oxide-dependent inhibition of cGMP-degrading phosphodiesterases (cGMP PDEs) is predicted to enhance insulin-mediated increases in microvascular per...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The American journal of physiology
دوره 274 5 Pt 2 شماره
صفحات -
تاریخ انتشار 1998